Ejaculate Characteristics of Captive Malayan Tapirs (*Tapirus indicus*)

Wanlaya Tipkanthacon*1,6,7, Budhan Pukazhenthi2, Boripat Siriaroonrat1, Ampika Thongphakdee1, Umaporn Maikaew3, Warisara Thomas4, Daraka Tongthainan3, Jessada Thaeonoen3, Sumate Kamolnorranath1, Mitchell Bush2,8, Sitthawee Thongtipsiridech5,6,7,*

Abstract

The aims of this study were to optimize semen collection by electroejaculation and characterize ejaculate characteristics in Malayan tapir (*Tapirus indicus*). Eight adult males (4-20 years of age) were anesthetized using a combination of medetomidine HCl (0.012-0.018 mg/kg), butorphanol tartrate (0.012-0.018 mg/kg), and ketamine HCl (5-7 mg/kg) administered intramuscularly via a dart and subjected to electroejaculation. Ejaculates (milky-white to yellowish color) were successfully collected from all males. Averages (Mean±SD) of the seminal traits (volume, pH, osmolality, sperm concentration, total sperm motility, and viability) were 10.3±9.4 ml, 7.4±3.4, 278.6±13.3 mOsm, 206.2±185.4x10⁶ spermatozoa/ml, 24±15.4%, and 35.1±6.5%, respectively. Morphological analysis showed low percentage of normal spermatozoa 6.7±2.6% with 39.2±8.5% intact acrosomes. This is the first study to evaluate semen characteristics and sperm morphology in the Malayan tapirs. Results provide fundamental information essential for development of assisted reproductive technologies in this species.

Keywords: Malayan tapir, Semen collection, Seminal traits

1 Bureau of Conservation, Research and Education, Zoological Park Organization, Bangkok, 10300, Thailand
2 Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
3 Khao Kheow Open Zoo, Bangpra, Sriracha, Chonburi, 20110, Thailand
4 Nakornratchasima Zoo, Mueng, Nakornratchasima, 30000, Thailand
5 Center for Agricultural Biotechnology, Kasetsart University, KamphaengSaen Campus, NakornPathom, 73140, Thailand
6 Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
7 Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
8 Adelaide Zoo, Frome Rd., Adelaide, 5000, South Australia

*Corresponding author: E-mail: wanlayav62@gmail.com, fvetnit@ku.ac.th

บทคัดยอ

คุณลักษณะน้ำเชื้อของสมเสร็จในสภาพเพาะเลี้ยงของประเทศไทย

วัศย์ พิทยกันทา 1,6,7* บุษรา พุฒศรี 2 บริพัตร ศิริอรุณรัตน์ 1 อัมพร สหพันธ์ 3 ภูมาศ โอมเก่ง 4 ดร.ธนา ทองไทยบัณฑ์ 5 เจษฎา แวริศรา 3 ทิพย์กันทา ทองไทยบัณฑ์ 4 มิชเชล บุช 2,8 สิทธิ์ชัย ทองพิทยศิริ 9,6,7*.

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อพัฒนาระบบการรีดเก็บน้ำเชื้อน้ำเชื้อด้วยการสัมผัสทางไฟฟ้าและตรวจประเมินคุณภาพและลักษณะของน้ำเชื้อรวมถึงตัวอสุจริย์ของสมเสร็จที่อยู่ในสภาพเพาะเลี้ยง ทำให้การศึกษาการวางแผนเพาะเลี้ยงและตรวจประเมินคุณภาพและลักษณะของน้ำเชื้อรวมถึงตัวอสุจริย์ของสมเสร็จในสภาพเพาะเลี้ยงของประเทศไทย.

การศึกษาครั้งนี้เป็นการศึกษากระบวนรีดเก็บน้ำเชื้อสมเสร็จด้วยกระแสไฟฟ้าที่ระดับ 2-7 โวลต์ จำนวน 8 ตัว ด้วยสูตรยาที่ประกอบด้วย 1) medetomidine HCl (0.012-0.018 มก./กก.) 2) butorphanol tartrate (0.012-0.018 มก./กก.) และ 3) ketamine HCl (5-7 มก./กก.) กระตุ้นการหลั่งน้ำเชื้อสมเสร็จด้วยกระแสไฟฟ้าที่ระดับ 2-7 โวลต์ จำนวน 80-140 ครั้ง ซึ่งสามารถวัดได้ชัดเจนจากภาพที่สัตว์กรุ่นล่าก่อนมีตัวสมเสร็จ โดยปริมาณต่อมลิมฟ์ 10.3±9.4 มิลลิลิตร ค่าความเป็นกรดด่างระดับ 7.7±3.4 ค่าอัลตราเซนติเมตร 278.6±13.3 มิลลิเมตร การเคลื่อนไหวตัวอสุจริย์ร้อยละ 24±15.4 ความแข็งตัวอยู่ 280.2±185.4 ล้านตัว/ดีซีมิลลิลิตร จำนวนสูญเสียตัวอยู่ 35.1±6.5 เปลี่ยนแปลงเปรียบเทียบระหว่างตัวอสุจริย์ด้วยกันตั้ง รอยละ 6.7±2.6 และตรวจพบความสมบูรณ์ของอะโครโซมของสมestre็จ 39.2±8.5 การศึกษาครั้งนี้เป็นการศึกษากระบวนรีดเก็บและคุณลักษณะของน้ำเชื้อด้วยการสัมผัสทางไฟฟ้าสมเสร็จในอนาคต ผลการศึกษาจะเป็นฐานข้อมูลที่เป็นประโยชน์สำหรับการศึกษาเพื่อพัฒนาเทคนิคยึดขับพันธุ์ในสมเสร็จต่อไปในอนาคต

คำริ่งคุณ: สมเสร็จ การรีดเก็บน้ำเชื้อ ลักษณะน้ำเชื้อ การประเมินความสมบูรณ์พันธุ์.

1 สวัสดิการชีวิต วิทยาและศึกษา องค์การสวนสมุนไพรธรรม درุณเกี้ยง กรุงเทพ 10300
2 สวนสัตว์แห่งชาติ สถาบันพันธุศาสตร์ 1500 ถนนวังทองศรี พหลพัทธบวร รัฐ noravites 22630 ระดับชาติ
3 สถาบันวิทยาชีววิทยา มหาวิทยาลัยเกษตรศาสตร์ จ.ชลบุรี 20110
4 สวนสัตว์แห่งชาติ มหาวิทยาลัยเกษตรศาสตร์ จ.นครปฐม 30000
5 ศูนย์สัตว์แพทยศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน น.ส.ผศ. 73140
6 ศูนย์สัตว์แพทยศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน น.ส.ผศ. 73140
7 ศูนย์ความเป็นเลิศด้านเทคโนโลยีชีวภาพเกษตร สำนักพัฒนาพันธุศาสตร์และวิจัยด้านวิทยาศาสตร์และเทคโนโลยี สำนักงานคณะกรรมการการอุดมศึกษา กรุงเทพ 10900
8 อาคารระดับ ถนนพระราม 2 ซอย 5000 ถนนพระราม

*ผู้รับผิดชอบบทความ E-mail: wanlayav62@gmail.com, fvetnit@ku.ac.th

Introduction

Malayan tapirs (Tapirus indicus; Desmarest, 1891) are large odd-toed herbivores in the Order Perissodactyla. They are listed as endangered by the IUCN Red list (Lynam et al., 2011). There are four species of tapirs including three American species: 1) Lowland tapir (T. terrestris) 2) Mountain tapir (T. pinchaque) and 3) Baird’s tapir (T. bairdii) and an Asian species, the Malayan tapir. Malayan tapirs are distributed in the tropical rain forest of Southeast Asia (Lekagul and McNeely, 1977).

In Thailand, the Malayan tapir is a reserved animal and is listed as critically endangered by the Thailand Office of Environmental Policy and Planning (OEPF, 1997). Current wild populations are highly fragmented and continue to decline due to deforestation, loss of habitat and overexploitation (Mace et al., 2000; Lynam et al., 2011). Ex situ conservation program of Malayan tapir has been established in many institutions worldwide. The recent global captive population comprises of 261 animals distributed among 79 institutions (Prastiti, 2010) and approximately 42 individuals reside in Thailand (last update October 2011).

It has been reported that the Malayan tapir reaches sexual maturity at 2-5 years of age (Kuehn, 1978). Previous endocrinology studies of tapir showed no evidence of seasonality (Brown et al., 1994; Kusuda et al., 2007). The gestation period is reported between 380-405 days (Kuehn, 1978) producing a single calf and only rare twins (Zahari et al., 2008). The limited number of founders in captivity has led to inbreeding depression in captive population. Furthermore, there were some reports about unsuccessful mating of breeding pairs, which resulted in no offspring (Sumate Kamolnoranath, 2011 personal data). Preliminary assessment revealed that the causes of
mating failures consisted of undesired aggressive behavior of male, infertility and health condition of animals. Furthermore, slow reproductive rate of tapir in terms of gestation period and long inter-birth interval (average 2-3 years) made it difficult for the species to rapid recover from low population numbers.

Ex situ conservation plays an important role in preserving living genetic resource and diversity in highly endangered species (Pukazhenthi and Wildt, 2004). Captive management programs combined with assisted reproductive technologies (ARTs) have facilitated the recovery of numerous species including the black-footed ferret (Howard et al., 2003), clouded leopard (Howard et al., 1996) and Przewalski horse (Summer et al., 1987; Monfort et al., 1991). Artificial insemination (AI) with fresh or frozen/thawed sperm also has been used successfully to preserve and manage genetic diversity in selected wildlife species (Wildt, 2009). The use of a proven genome resource bank (GRB) also is an effective tool to ensure that genetic viability is maintained for long-term genetic health. Semen from free-living individuals has successfully been used to increase genetic diversity via AI in captive populations of giant panda (Moore et al., 1984) and Asian elephants (Brown et al., 2004; Thongtip et al., 2009).

The understanding of reproductive parameters and physiology is critical for developing the ARTs in novel species (Pukazhenthi and Wildt, 2004). The fertility assessment contributes to an understanding of an individual’s potential reproductive performance. Semen analysis also permits the systematic examination and evaluation of the male germ cells (spermatozoa). Examination of reproductive organs and assessment of semen quality have been used to predict fertilizing potential in domestic animals such as the boars, bulls and stallions (Amann, 1989; Colenbrander, 1992). The successful manipulation of spermatozoa for ARTs requires a through understanding of male reproductive biology, physiology as well as endocrinology with the ability to collect, evaluate and sustain and/or improve their viability. Ejaculate quality is highly species specific. It requires in-depth studies of targeted species. Spermatozoa of some endangered species have been successfully stored by cryopreservation in several species including the black rhinoceros (Roth et al., 2005), white rhinoceros (Roth et al., 2005), African elephant (Howard et al., 1984), and neotropical Baird’s tapir (Pukazhenthi, 2011). The specific aims of this study were to 1) develop a safe and consistent method including anesthesia for semen collection using electro-ejaculation, and 2) to evaluate and characterize the ejaculate traits in the Malayan tapir semen for the future ARTs studies.

Materials and Methods

Animal: Captive male Malayan tapirs (4-20 years old, n=8) were used in this study. The body weight for all animals was estimated (250-300 kg). Animals were maintained in 4 zoos under the Zoological Park Organization (ZPO): 1) KhaoKheow Open Zoo (KKOZ, n=3), 2) Nakhonratchasima Zoo (NRZ, n=2), 3) Chiang Mai Zoo (CMZ, n=1) and 4) Songkhla Zoo (SKZ, n=2).

Animal anesthesia: The animals were anesthetized using a MBK combination consist of medetomidine HCl (0.012-0.018 mg/kg), butorphanol tartrate (0.012-0.018 mg/kg), and ketamine HCl (5-7 mg/kg). All three drugs were purchased from ZooPharm®, Fort Collins, Colorado, USA. They are mixed in a single dart and administered (intramuscularly) via a dart (DanInject®, Denmark). Some individuals were supplemented with ketamine HCl and/or Guiafeninesine (GG; VedcoInc., Saint Joseph, USA) administered intravenously to achieve the optimal level of anesthesia for electro-ejaculation (EEJ). During anesthesia, physiological parameters including respiration rate, heart rate, pulse rate and body temperature were monitored and recorded. The blood oxygen saturation was measured using pulse oximeter (N-600x™ Pulse Oxi meter, COVIDIEN, Boulder, CO). An endotracheal tube (16-20 mm diameter) was inserted for respiratory management (Bush, 1996). The positive respiration pressure was maintained by pumping the oxygen via the endotracheal tube to maintain the optimal hemoglobin oxygen saturation (>95%). After all procedures were completed, the medetomidine HCl and butorphanol tartrate were reversed with atipamezole (0.07-0.09 mg/kg; Antisedan®, Pfizer Inc, New York, USA) and Naltrexone (0.36-0.47 mg/kg; ZooPharm®, Fort Collins, Colorado, USA) via an intramuscular injection.

Testicular assessment: Tapir testes were examined for testicular size and tonicity (Fig 1). The testes were measured for length (L), width (W) and height (H) using the formula: Volume (cm³) = 0.5233 x L x W x H. These values were then used to calculate the testicular volume using the formula: Volume (cm³) = 0.5233 x L x W x H (Howard et al., 1983; Love, 1992; and Pukazhenthi et al., 2011).

Figure 1 Semen collection by electroejaculation in a Malayan tapir (A-C). A) Testes were measured using a Vernier caliper prior to semen collection; B) A rectal probe with three longitudinal electrodes was inserted into the rectum and electrical stimuli applied. Another person assisting with the collection, directed the penis into a sterile polypropylene specimen cup; and C) Ejaculates appeared milky white.
Semen collection by electro-ejaculation: Semen collections (n=8 males; 14 ejaculates total) were conducted from July 2010 through June 2011. The tapirs were subjected to a standardized electro-ejaculation procedure as described by Pukazhenthi et al. (2011). Briefly, a lubricated rectal probe (5.2 cm diameter with three longitudinal electrodes) was inserted approximately 15 cm into the rectum with the 3 electrodes directed ventrally and connected to a 60 Hz sine wave electro-ejaculator (PT Electronics, Boring, Oregon). A series of electrical stimuli were initiated at 2 volts (V) (3-5 stimulation) and gradually increased to 3 V (3-5 stimulation), 4 V (10-20 stimulation), 5 V (10-20 stimulations) and 6 or 7 (10-20 stimulation), respectively. The higher volt as 8 V has been challenged in case of some animals which were actively ejaculating. The stimulations were continued at the current voltage or gradually increasing until the ejaculation occurred. Ejaculates were collected into sterile polypropylene specimen cups (8 oz) and maintained at ambient temperature (28-30 °C) and kept in a styrofoam box to avoid exposure to light until evaluated.

Semen evaluation: Ejaculates were immediately evaluated for the appearance, volume and pH (MERCK, Darmstadt, Germany). Semen motility (0-100%) and forward progressive status (0-5) were initially evaluated using a light microscope (Howard, 1993). Sperm concentration was determined using a hemocytometer and total sperm per ejaculate was determined by multiplying sperm concentration/ml with total ejaculate volume. Semen osmolality was measured using an osmometer (Osmomat®, Gonotec GmbH, Berlin, Germany). To assess sperm viability, samples were stained using eosin-nigrosin staining and/or aniline blue staining (World Health Organization, 2010) and 200 spermatozoa per sample were examined.

Sperm morphology assessment: An aliquot (20 µl) of raw ejaculate was fixed in 100 µl of 0.3% glutaraldehyde in PBS (pH 7.4, 340 mOsm). A second aliquot (2 µl) was placed on a (warmed) slide with a cover slip. Sperm morphology was assessed at 1000x using a phase contrast microscope (Olympus, Tokyo, Japan) and 200 spermatozoa per sample were evaluated.

Acrosome integrity: Aliquots (5-20 µl) of neat ejaculate were fixed in 0.5 ml of 4% paraformaldehyde solution (pH 7.4) (Hass et al., 1988) at room temperature for 15 minutes then stored at 4°C until processed for Coomassie blue staining. Two hundred spermatozoa were counted for acrosome status.

Statistical analysis: Data were analyzed using NCSS (NCSS LLC., Utah, USA). Semen characteristics were examined using descriptive analysis and presented as mean±SD.

Results

Semen collection: A total of 14 semen collections was conducted on eight males (1-3 ejaculates per male). Spermic ejaculates were obtained from all males. Some males (n=4) appeared to ejaculate spontaneously during palpation of the accessory sex glands, however, spermatozoa were immotile. All males responded to electrical stimuli with muscle contractions starting from 2 V and gradually increased to 3, 4, 5, 6, and 7 V (Table 1). In two males, stimulation at 7 V resulted in a slight arousal and one tapir tolerated stimulations at 8 V with minimal adverse effects. In all procedures, ejaculates were obtained starting at 3 V stimulation.

Testicular measurement: The Malayan tapir testes were ellipsoid in shape, located at the cranioventral portion of the anus within a slightly pendulous scrotum. It was most convenient to measure the testes when the animal was in standing position. When placed on lateral recumbence, in some tapirs, the testes could not be palpated or measured because they retracted into the inguinal canal or abdomen. In this study, we could measure testicular sizes in only four males. All of them had normal tonicity and no evidence of scar or granulation tissue inside the testes were found. Testicular dimensions and calculated volume are shown in Table 2.

Semen characteristic: Ejaculates were thick, creamy and milky white with one ejaculate appearing creamy brownish and sticky. The semen of all collection was assessed under light microscope. The results showed the ejaculate quality varied among individuals. Mean±SD of the seminal traits were 103±94.9 ml, 7.4±3.4 and 278.6±13.3 mOsm for semen volume, pH and osmolality, respectively. Ejaculates contained 206.1±185.4x106 spermatozoa/ml with 24±15.4% motile sperm and 2.0±0.2 wave motion score

Spermatozoa morphology: Most ejaculates contained a high proportion of morphologically abnormal sperm (92%) with only 6.7±2.6% morphologically normal. The percentage of intact acrosomal membrane was 39.2±8.5% (Fig 2). The mean proportion of primary and secondary of morphological defects in fresh semen were 42% and 52%, respectively. Ejaculates also contained high proportions of abnormal acrosome (51.7±22.5%), bent mid-piece with droplet (32%) and tightly coiled tail (12%).

Table 1. Protocol for electro-ejaculation in each series of stimulation for Malayan tapir

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Voltage (V)</th>
<th>mA (miliamps)</th>
<th>No. of stimulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series (1, 2, 3)</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2. Testicular measurement in adult captive Malayan tapir

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Left testicle (n=4)</th>
<th>Right testicle (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (cm)</td>
<td>8.9±1.4 (7.5-11.2)</td>
<td>9.2±0.7 (8.2-9.9)</td>
</tr>
<tr>
<td>Width (cm)</td>
<td>4.4±0.5 (3.5-4.8)</td>
<td>5.0±0.1 (4.5-5.2)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>4.4±0.3 (4-4.9)</td>
<td>4.8±0.7 (4.5-5.1)</td>
</tr>
<tr>
<td>Volume (cm³)</td>
<td>93.2±25.6 (65.9-133)</td>
<td>118.2±12.2 (106-139)</td>
</tr>
</tbody>
</table>

Values represent Mean±SD; value within parenthesis present minimum and maximum
Table 3 Ejaculate characteristic of captive Malayan tapir (n=8 males)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean±SD</th>
<th>Range (n=14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>10.6±6.8</td>
<td>4-20</td>
</tr>
<tr>
<td>Volume (ml)</td>
<td>10.3±9.4</td>
<td>7.9-33.9</td>
</tr>
<tr>
<td>Semen pH</td>
<td>7.7±3.4</td>
<td>7-8</td>
</tr>
<tr>
<td>Osmolarity (mOsm)</td>
<td>278.6±13.3</td>
<td>266.8-298.5</td>
</tr>
<tr>
<td>Sperm concentration (x10⁶ spermatozoa/ml)</td>
<td>206.1±185.4</td>
<td>60-520.6</td>
</tr>
<tr>
<td>Total sperm per ejaculate (x10⁶)</td>
<td>1624.8±241.0</td>
<td>52-4,150</td>
</tr>
<tr>
<td>Sperm motility (%)</td>
<td>24±15.4</td>
<td>0-40</td>
</tr>
<tr>
<td>Sperm progressive motility status (1-5)</td>
<td>2.0±0.2</td>
<td>1-3</td>
</tr>
<tr>
<td>Sperm viability (%)</td>
<td>35.1±6.5</td>
<td>28.2-42.6</td>
</tr>
<tr>
<td>Normal sperm morphology (%)</td>
<td>6.7±2.6</td>
<td>2.5-13</td>
</tr>
<tr>
<td>Primary defects (%)</td>
<td>42.7±22.5</td>
<td>24.7-61.7</td>
</tr>
<tr>
<td>Secondary defects (%)</td>
<td>52.3±28.1</td>
<td>42.3-71.1</td>
</tr>
<tr>
<td>Acrosome intact (%)</td>
<td>39.2±8.5</td>
<td>31.5-54</td>
</tr>
</tbody>
</table>

Values represent Mean±SD; value within parenthesis present minimum and maximum

Discussions

The present study is the first systematic report on 1) anesthesia of a large cohort of Malayan tapirs maintained in captivity in Thailand and 2) their ejaculate traits. We demonstrate that Malayan tapirs can be safely anesthetized using MBK and reversed without any adverse effects. We also demonstrate that similar to the Baird’s tapir, spermic ejaculates can be consistently collected from male Malayan tapirs using electroejaculation (Pukazhenthi et al., 2011). Although the overall ejaculate quality was not optimal, the results provide fundamental information on the male reproductive biology, information crucial for development of assisted reproductive technologies for genetic management.

Knowledge and experience on Malayan tapir anesthesia are limited among zoo and wildlife veterinarians. However, there are significant needs in using safe anesthesia for medical procedures and disease surveillance in this species. During the past decade, anesthesia of Malayan tapir has been limited to medical procedures (Lambeth et al., 1998; Kaewamatawong et al., 2010) due to the risk associated with anesthesia and uniqueness of anatomy in this species (Janssen, 2003; Hernandez-Divers and Bailey, 2007). In this study, the anesthesia protocol was optimized for reproductive assessment in males using MBK in a single dart. This combination was safely used for surgery in various species, e.g. pig (Sakaguchi et al., 1996), dog (Ko et al., 2000), Thomson’s gazelle (Chittick et al., 2001), red wolf (Larsen et al., 2002) and binturong (Moresco and Larsen, 2003).

Intravenous supplementation of ketamine HCl and GG has previously been reported to yield satisfactory depth of anesthesia for surgical intervention in the domestic horse (Brock and Hilderbrand, 1990; Young et al., 1993) and ponies (Taylor et al., 1998). In addition, it has been used for semen collection in one-horned rhinoceros (Roth et al., 2005), black rhinoceros (Roth et al., 2005), Southern white rhinoceros (Roth et al., 2005), and Indian rhinoceros (Stoop et al., 2010). In the present study, 2/8 males (25%) showed a pronounced response to the electric stimuli during electroejaculation. Hence, a supplemental dose of ketamine HCl and/or GG infusion had to be administered intravenously. This resulted in an immediate control of the plane of anesthesia. Amongst the anesthetic drugs used in this study, medetomidine HCl was reported to improve the number of spermatozoa per ejaculate in domestic cat (Zambelli et al., 2007) but this effect was not observed in this study.

Table 4 Comparison of semen characteristic of endangered species obtained by eletroejaculation

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Malayan tapir</th>
<th>Baird’s tapir</th>
<th>Przewalski horse</th>
<th>Indian rhinoceros</th>
<th>African Elephant</th>
<th>Wild boar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=8)</td>
<td>(n=11)</td>
<td>(n=14)</td>
<td>(n=6)</td>
<td>(n=5)</td>
<td>(n=11)</td>
</tr>
<tr>
<td>Volume (ml)</td>
<td>10.3±9.4</td>
<td>20.4±4.3</td>
<td>31.1±2.1</td>
<td>158.6±32.8</td>
<td>93.3±48.4</td>
<td>15.5±8.8</td>
</tr>
<tr>
<td>Sperm pH</td>
<td>7.7±3.4</td>
<td>7.4±1.1</td>
<td>9.2±0.0</td>
<td>8.74±0.0</td>
<td>7.8±0.1</td>
<td>ND</td>
</tr>
<tr>
<td>Osmolality (mOsm/kg)</td>
<td>278.6±13.3</td>
<td>284.7±14.5</td>
<td>299.7±2.7</td>
<td>308.0±4.7</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Concentration (x10⁶/ml)</td>
<td>206.1±185.4</td>
<td>101.2±24.0</td>
<td>2.69±0.2</td>
<td>10.11±3.5</td>
<td>2409±521</td>
<td>8.3±4.2</td>
</tr>
<tr>
<td>Sperm motility (%)</td>
<td>24±15.4</td>
<td>46±15.4</td>
<td>42.2±2.2</td>
<td>48.0±9.4</td>
<td>70.0±6.0</td>
<td>76.0±7.8</td>
</tr>
<tr>
<td>Sperm viability (%)</td>
<td>35.1±6.5</td>
<td>ND</td>
<td>ND</td>
<td>89.5±1.6</td>
<td>ND</td>
<td>84.0±10.0</td>
</tr>
<tr>
<td>Normal sperm (%)</td>
<td>6.7±2.6</td>
<td>6.9±1.4</td>
<td>ND</td>
<td>38.8±7.9</td>
<td>ND</td>
<td>85.6±6.6</td>
</tr>
<tr>
<td>Acrosome intact (%)</td>
<td>39.2±8.5</td>
<td>74.8±3.8</td>
<td>ND</td>
<td>85.5±19</td>
<td>ND</td>
<td>85.0±6.6</td>
</tr>
</tbody>
</table>

*Current study; †Pukazhenthi et al., 2011; ‡Collin 2010; ††Stoops et al., 2010; ‡‡Howard et al., 1984; ‡§Fischman et al., 2011 ND: Not determined, *Value represent Mean±SEM, †Value represent Mean±SD
There are a number of semen collection methods described for Perissodactyla such as manual semen collection in white rhinoceros (Walzer et al., 2000; Hermes et al., 2005), post coital semen collection in Sumatran rhinoceros (O’Brien and Roth, 2000) with limited success and requires intensive animal training (Hermes et al., 2005). Semen collection using an artificial vagina in tapis has previously been reported, but no further information is available (Durrant, 1990). Electroejaculation is a safe alternative to obtain semen samples from a host of species including the Perissodactyls i.e. black rhinoceros (Roth et al., 2005), white rhinoceros (Roth et al., 2005), Indian rhinoceros (Stoop et al., 2010), Sumatra rhinoceros (Walzer et al., 2010) and Baird’s tapir (Pukazhenthii et al., 2011). In this study, the Malayan tapir semen was collected successfully using electroejaculation as previously described for the Baird’s tapir (Pukazhenthii et al., 2011).

In this study, the size and the tonicity of tapir testicles were normal and comparable with other species (i.e. Bovidae: Bailey et al., 1996; and carnivores: Howard, 1993). The ejaculates of captive Malayan tapis in this study showed low motility with high variation (0-50%). In contrast, ejaculates with good sperm motility have been obtained from other wildlife species including the wild boar (Fischman et al., 2003), African elephant (Howard et al., 1984), rhinoceros (Roth et al., 2005; Hermes et al., 2005), Przewalski horse (Collin, 2006; 2010) and Baird’s tapir (Pukazhenthii et al., 2011). This discrepancy in sperm motility in the present study may be attributed to sperm structure, flagellar physiology, calcium signaling, protein phosphorylation, nutritional deficiencies or inbreeding (Turner, 2006) and warrants further studies.

Non-physiological ejaculation might affect semen quality. Incomplete ejaculates especially in dog also have been reported to exhibit poor motility (Olson et al., 1987). Alkaline phosphatase has been used to differentiate between an incomplete and complete ejaculates in the dog (Olson et al., 1987; Kutzlera et al., 2003) and horse (Turner and McDonnell, 2003). Complete ejaculates routinely contain higher concentrations of alkaline phosphatase. However, in this present study, we did not evaluate alkaline phosphatase in Malayan tapir seminal plasma. Therefore, further studies on the value of alkaline phosphatase in differentiating between complete and incomplete ejaculate is crucial. From our previous studies in Asian elephant, we found that the urine contamination was a major cause of poor sperm motility and could be detected by measuring creatinine and blood urea nitrogen in seminal plasma (Sitthawee ThongtipSiridech, unpublished data). In the present study, however, we did not measure either constituent. Interestingly, in this study, the semen pH was near neutral (7.7±3.4) suggesting that the samples were not contaminated with urine.

The ultrastructural morphology analysis of sperm was one of the techniques that could predict sperm motility (Turner, 2006). However, ultrastructure of Malayan tapir sperm has not been analyzed in our study. It would be important to examine Malayan tapir sperm at the ultrastructural level to better understand the factors responsible for poor sperm motility.
The osmolality of Malayan tapir semen was similar to that of Baird’s tapir (Pukazhenthi et al., 2008 and 2011), but lower than that of the Przewalski’s horse (Collin, 2006; 2010) and rhinoceros semen (Roth et al., 2005; Hermes et al., 2005). The sperm concentration in tapir was higher than Przewalski horse (Collin, 2006; 2010) and Indian rhinoceros (Stoop et al., 2010) but lower than that of African elephant ejaculate (Howard et al., 1984).

The high proportion of morphologically abnormal spermatozoa has been reported in several Perissodactyla species (Roth et al., 2005; Collin, 2010; Stoop et al., 2010; Pukazhenthi et al., 2011). The Malayan tapir ejaculates from this study demonstrated consistently low numbers of morphologically normal spermatozoa (Table 2). The common abnormalities observed consisted of spermatozoa with an abnormal acrosome and/or a bent midpiece with a cytoplasmic droplet, and/or a tightly coiled flagellum, respectively (Fig 2). In general, acrosomal abnormalities arise from defects in spermatogenesis, while the occurrence of a high proportion of spermatozoa with a midpiece and/or cytoplasmic defects (droplets) indicates a defect of testicular origin. Therefore, additional studies are warranted to examine the etiology of the presence of high proportions of spermatozoa with an abnormal midpiece and/or flagellum.

Lack of gene diversity or increased inbreeding have been studied extensively in several species including cheetah (Raymond and O’Brien, 1993; O’Brien et al., 2009), Eld’s deer (Wildt, 1992) and antelopes (Roldan et al., 2006). Teratospermia is highly prevalent in domestic and non-domestic felid species (Wildt et al., 1983; Pukazhenthi et al., 2006). Sperm abnormalities have been attributed to age, seasonality, stress, diseases and inbreeding status in several species e.g. bulls (Soderquist et al., 1996), stallions (Dowsett and Knott, 1996), goats (Karagiannidis et al., 2000), Eld’s deer (Monfort et al., 1993), antelopes (Gomendio et al., 2000), and cheetahs (Wildt et al., 1983; Lindburg et al., 1993). The limited numbers of tapir founders in captivity increase inbreeding opportunity. The high proportion of abnormal spermatozoa and poor sperm motility in this study may have been influenced by inbreeding depression. Further molecular genetic analysis is recommended to assess genetic diversity in captive tapir population and can be used for breeding recommendations.

Although previous studies of female Malayan tapir endocrinology indicated that tapirs were not seasonal breeders (Brown et al., 1994; Kusuda et al., 2007); there is no information on the endocrinology of the male Malayan tapir. Therefore, further investigation on male Malayan tapir endocrinology might increase our understanding of the male tapir reproductive physiology and also could facilitate the development of assisted reproductive technologies in this species. In conclusion, the present study is the first systematic research conducted to describe semen characteristic of the endangered Malayan tapir and may facilitate further development of sperm cryopreservation technologies both for the tapir and other species.

Acknowledgements

This study was supported by the Center for Agricultural Biotechnology and the Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Kasetsart University and was partially funded by the National Research Council of Thailand. We gratefully thank the zoo staffs, keepers, scientists and veterinarians of four zoos under the Zoological Park Organization (Khao Kheow Open Zoo, Chiang Mai Zoo, Nakhonratchasima Zoo and Songkhla Zoo) for their kind support in this study.

References

